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A number of the theorems expounded by Prigogine, Glansdorff and their 
collaborators are translated into electrical circuit terminology and their 
validity and significance discussed. The simultaneous occurrence of 
inductors and capacitors represents a situation not envisioned in the 
chemically oriented discussions and imposes some limitations. The electrical 
terminology also leads to "dual" theorems, in which voltage sources are 
replaced by current sources. The validity of the theorems in situations in 
which fluctuations are critical to the relaxation behavior is analyzed. The 
"excess entropy production" theorem is only valid if the circuit relaxation 
can be described by single-valued macroscopic variables, but not if it must 
be described by distribution functions. We stress that no purely local 
characterization, which examines a multistable system only in the neighbor- 
hoods where it occurs with high probability, can predict or characterize 
the steady state, 
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1. I N T R O D U C T I O N  

Prigogine and Glansdorff,  in col laborat ion with a n u m b e r  of colleagues, 
have expounded,  in depth, a range of theorems relating the stability of  the 

dissipative steady state to entropy, ent ropy product ion,  ent ropy curvature,  
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etc. A good summary of this viewpoint and an accompanying citation list 
are found in a recent semipopular exposition31~ The stream of work sum- 
marized in Ref. 1 is motivated largely by chemical reaction kinetics and uses 
language and approximations appropriate to that motivation. In this paper, 
we shall consider some electrical network theorems and their limitations. 
The electrical theorems are clearly modeled after what we shall, for brevity, 
call the Brussels literature. 

Before deriving the detailed theorems, we shall discuss some general 
aspects. With the exception of Sections 5 and 6, our later discussion will 
concern deterministic situations, related to the macroscopic equations of 
motion, which will be circuit equations in our case. In the deterministic case 
stability questions can be answered directly from these equations of motion 
and we see little need for rewording these in terms of quantities that are 
important in thermodynamics. We only do so because it has become fashion- 
able in the physical chemistry literature. 

There is an important distinction between the Brussels literature and 
some of  this author's past work. In the Brussels work, entropy is generally 
taken to be what we shall, for the sake of emphasis, call a " d e a d "  entropy. 
It is an entropy found by integrating the local entropy density. The latter 
is taken t o  be the entropy of the equilibrium state under static parameters 
corresponding to those found in the reaction. Thus this " d e a d "  entropy 
makes no allowance for the tightness of control maintained by the ongoing 
reaction. In other words the " d e a d "  entropy is the entropy immediately 
after activating energy sources for an ongoing process have ceased to function, 
but before the system has had a chance to relax its spatial distribution of 
composition, pressure, temperature, etc. By contrast, this author has invoked 
a viewpoint in which entropy is taken to be a measure of the statistical 
distribution while the dynamic process is active, and while this process controls 
the fluctuations. These " l ive"  fluctuations need not be identical to those 
found for the same parameters in equilibrium. This follows, perhaps, most 
dearly from the discussion of entropy given by McNeil and Walls ~2~ for a 
reaction beyond its critical point. For  large systems where a reaction (or 
other kinetic process) proceeds in a spatially homogeneous fashion, so that 
only a minute fraction of the degrees of freedom are directly related to the 
progress of the reaction, the distinction between " l ive"  and " d e a d "  entropy 
may be unimportant. "L ive"  entropy was found useful by this author in a 
1962 paper ~3~ calculating the transition rate between a metastable state and 
a stable state, over an intervening improbable state, in a dissipative system 
far from equilibrium. In that paper it was shown that the transition rate over 
the barrier takes the same form as for a particle in an overdamped bistable 
potential well if the " l ive"  entropy is used to define an equivalent free energy 
of activation. More recently ~4~ it has been shown that the " l ive"  entropy 
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permits generalizations of dQ = T dS to nonequilibrium systems. In con- 
nection with this discussion of " d e a d "  vs. " l ive"  entropy it is appropriate 
here to refer to the work of Schl6gl, which is intermediate in character. 
Schl6gl's early work (5) starts from a general statistical mechanics framework, 
taking S to be a sum over the microstates i of  a dissipative system: 
S = - k  ~ p~ log p~. This is clearly a " l ive"  entropy. In later treatments, (6,7) 
however, SchRigl introduces the assumption that the log Pc are linearly 
related to the macroscopic variables, and it is this author's belief that this 
assumption is not always consistent with the behavior of  a " l ive"  entropy. It 
is through this assumption that SchlSgl arrives at results identical to those of 
the Brussels work. 2 

An electrical viewpoint has several advantages. The simplicity of electrical 
networks is characterized by the fact that the Onsager relationships, which 
normally result from a sophisticated discussion invoking detailed balance, 
are a simple algebraic result in network theory. In electrical engineering it 
has furthermore long been customary to consider voltage sources and 
current Sources on a par, and we shall see this will result in several "d u a l "  
theorems. By contrast, in the Brussels literature, as in most transport theories, 
including those of solid state physics, " forces"  are given an elevated role as 
causative agents, and fluxes are usually considered a consequence. In a field 
unconnected to this paper, and related to electron transport in metals, (8) the 
author also found it useful to invoke a viewpoint in which the fluxes entering 
the system are taken to be the determining boundary conditions. Additionally, 
as we shall see, electrical networks permit energy storage in both capacitive 
and inductive forms. The storage of charges in  a capacitor, at a variety of 
potentials, bears a close analogy to the storage of chemical energy via 
species in variable concentrations, at an appropriate chemical potential. The 
inductances, however, provide an energy storage directly related to the 
current or " f lux"  in the system, and are analogous to a kinetic energy 
associated with the reaction rate in a chemical system (rather than with an 
unrelated and more easily separable background hydrodynamic flow). 
Finally, we may cite the fact that stability analysis, for systems very far from 
equilibrium, is a long-established tradition in the electrical literature. The 
reader could do worse than spend a few minutes with a book from the early 
part of this century (9) to see how sophisticated the concepts and analysis were 
at that time. 

Another point that threads through much of the remaining discussion is 
that we will be concerned with theorems related to energy disssipation in the cir- 
cuit. Energy dissipation is, in turn, easily relatable to entropy production only 
if there is a single temperature applicable to all of  the network components, 

2 See, however, F. Schl/Sgl in Cooperative Effects, H. Haken, ed., North-Holland, 
Amsterdam (1974), for a more careful discussion of this author's viewpoint. 
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2. M I N I M A L  E N E R G Y  D I S S I P A T I O N  

Minimal energy dissipation theorems have had a longstanding historical 
role (Ref. 10, pp. 79-80). For a more detailed discussion of some of the 
variations on this theme, and a critical analysis of aspects other than those 
we shall emphasize, the reader is referred to discussions by Ziman ~11) and 
by Keller312~ 

Consider first a circuit containing only voltage sources and linear 
resistors. Now consider voltage distributions in this network that deviate 
slightly from the steady state distribution, and as a result lead to currents 
that do not obey Kirchoff's current law; there is a divergence of current. 
The potential drop across the voltage sources is left unperturbed. Now use 
these perturbed voltages to calculate heat generation by simply adding the 
dissipation terms V2/R for all the resistive branches. Then the total dissipa- 
tion is minimal for the correct voltage distribution, satisfying KCL (Kirch- 
hoff's current law). To prove this, let V~ be the " t r ia l"  potential at node i 
in the network, and let F~0 be the correct, unperturbed potential. The 
dissipation, calculated as prescribed, is �89 Y.~.j (F~ - Fj)2/R~y, where the sum 
includes all the resistive links in the network. We then have, to first order in 
the variation, 

~[~ ~ (V, - Vj)~/R,~] = ~. (~V,)(V, 0 - Vjo)/R,, 
~,j  t,.7 

- ( vj)(V,o - V,o)/R,, O) 

= 2 - v j 0 ) / R , j  
I , J  

Each term ~V, is multiplied by the sum of all the resistive currents 
(V,o - Vjo)/R~j leaving the ith node. If  a node is connected only to resistances, 
and not to voltage sources, then this sum vanishes since the unperturbed 
solution obeys KCL. If  the ith node is connected to batteries, then let us 
supplement the terms in (1) multiplying ~V, through additional terms of the 
form ~VdB, one term for each battery terminal, where i,  is the battery 
current. A battery, however, generates a fixed potential difference and the 
perturbation 8 V at its two terminals must be identical. Thus the supplemen- 
tary terms ~ Vds, which must be added to get vanishing current sums, cancel 
after summation over both ends of the battery. Thus each ~V~ in (1) can be 
multiplied by a vanishing sum of unperturbed currents and (1) vanishes. The 
dissipation is stationary. It is furthermore easily shown, by examining the 
second-order terms in the perturbation, that the dissipation is minimal at the 
solution satisfying KCL. 

Up to this point the perturbed potential represents only a mathematical 
variation, not a meaningful physical state. Let us assume, however, that 
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there are capacitors tied to the nodes. Let the capacitive network be sufficiently 
complex so that the capacitive potential at each of the original resistive nodes 
is independently variable by a suitable choice of capacitive charges. [If we 
are representing an RC network that does not have that many capacitors, then 
let us limit the allowed voltage perturbations in Eq. (1) to those achievable 
through variation of the capacitive charges.] Now the perturbation can be 
considered to represent a real physical state, though not a steady state, in 
which the deviation from KCL represents current flow in and out of the 
capacitors. If  the capacitors and resistances are all positive, such a network 
will always relax toward a steady state, in which KCL is obeyed and the 
potential distribution becomes time independent. The variational principle 
shows that the energy dissipation must decrease during this relaxation. Note 
that we need not assume linearity on the part of the capacitors. 

Section 1 stressed the duality of voltage and current sources. An entirely 
analogous minimal heat generation variational principle for circuits using 
only current sources is easily proven. The variations under consideration now 
obey KCL, but the associated voltage variations (calculated from Ohm's 
law) need not obey Kirchhoff's voltage law (KVL), i.e., we can deviate from 
curl E = 0. Then ~ i2R, summed over all resistive elements, is minimal when 
KVL is obeyed. The perturbed solutions can again be given a physical 
representation by letting the deviations in voltage from KVL be dropped 
across inductances in series with the resistive elements. This form of the 
variational principle is discussed by Jeans, both for the case of a discrete 
network (Ref. 13, Sections 356 and 357) and for the case of a continuous 
current distribution (Ref. 13, Section 384). 

As has been pointed out by the author in a separate publication, (14) the 
simplest conceivable case that mixes the two situations conceived above, a 
battery across a series combination of a linear resistance and inductance, can 
show an increasing rate of heat generation as it relaxes toward a steady 
state. 

The theorem for voltage sources discussed above is believed to be the 
analog of the minimal entropy production principle discussed, for example, 
by deGroot and Mazur. (15) A second minimal entropy production principle 
is discussed, e.g., by Nicolis (Ref. 16, p. 216). Here entropy production is 
taken as a quadratic function of driving forces X~, 

= L,,X, Xj  (2) 
i j  

It is assumed that some of the X~ are prescribed. Then ~ is minimal if the 
remaining X~ are set so that their associated fluxes ~j L~jXj vanish. (L~j = Lj~ 
is assumed, requiring proximity to equilibrium.) In the electrical case, 
setting the unspecified voltage sources so that no current flows through them 
is equivalent to cutting these branches open. It does not seem to this author 
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that this formulation is identical to the one associated with Eq. (1), though 
the two are sometimes (Ref. 17; Ref. 10, Chapter III) discussed as if they 
were one. It has, however, been pointed out to me (by G. Nicolis and 
independently by C. Bennett) that each of these formulations can be shown 
to be a consequence of the other. 

3. THE G E N E R A L  E V O L U T I O N  C R I T E R I O N  

Glansdorff and Prigogine (Ref. 10, Chapter IX) invoke a criterion with 
the above title to discuss situations far away from equilibrium, where the 
Onsager relations cannot be invoked. The basic point is 

dxe/dt = ~j,(dX,/dt) < 0 (3) 
t 

Here P is the dissipation, j, is a flux, and dXJdt is the time derivative of the 
associated force as the state is approached under a set of fixed and externally 
applied forces. The notation dxP indicates that only the X time derivatives 
are included; the terms (djJdt)X~ do not appear in the sum in Eq. (3). 

This theorem is easily restated in network language. Consider ~,i~j, 
where $~ is a node potential and i,j is the current from node i to nodej. Then 
consider 

This sum must vanish, since ~j i,j vanishes, through KCL. The voltage source 
terms drop out; a battery current contributes to two canceling terms, coming 
from its two terminals. The capacitive terms are of the form l? dQ/dt = C(VI) 2, 
where V is the voltage across the capacitor, Q is its charge, and C is the 
differential capacitance (C = dQ/dV) of a possibly nonlinear capacitor. Is 
C necessarily positive? Glansdorff and Prigogine (Ref. 10, p. 47) assert that 
the compressibility must be positive if the material, locally, is to be stable. 
It would be convenient here to invoke a similar assertion for the differential 
capacitance. We are, unfortunately, far from sure that it is obviously and 
inevitably correct. For a capacitor under constant-voltage conditions, it is 
undoubtedly correct. A capacitor in the interior of a complex, and possibly 
active, network need not be under constant voltage. We expect to discuss 
these questions in a separate publication. For the moment, to make progress, 
let us suppose, in accordance with the Brussels treatment of other degrees of 
freedom, that C is positive or, more generally, that ~ F, dQddt, summed 
over the terminals of a multiport capacitive device, is positive definite. Thus 
the capacitive devices contribute positively to Eq. (4), leaving 

ik(dVk/dt) <. 0 (5) 
k 
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where the sum extends over the noncapacitive elements: resistors and 
inductances. Equality in Eq. (5) holds only if there are no capacitors at all 
in the circuit. If  there are no inductances, then Eq. (5) becomes a sum over 
the dissipative elements, and the theorem agrees with the Glansdorff and 
Prigogine results of Eq. (3). Note that the voltages appearing in Eq. (4) are 
those associated with individual internal dissipative elements, not with the 
externally specified voltage sources, for which /2 vanishes. Note furthermore 
that we need not assume that the circuit is limited to two-terminal devices. 
We can include three-terminal devices, e.g., transistors, at least to the extent 
that it is a good approximation to represent the transistor as a purely 
resistive device whose capacitances can be represented as separate external 
elements. In that case, however, it is necessary to retain the form used in 
Eq. (4) for the transistor, summing over its three terminals. No stability 
assumption is needed to derive Eq. (5), beyond that of positive capacitances. 
The circuit can contain devices with gain and negative resistances, and can 
be violently unstable. If  inductances and capacitances are both present in the 
circuit, then we can have a damped oscillatory approach to a steady state, 
and even in the simplest underdamped series R L C  circuit /?i will change sign 
with time. 

Once again we have a dual theorem. If  a network has only current 
sources, then 

~, v,~(diJdt) ~ 0 (6) 
k 

where the sum is now taken over the noninductive circuit elements. The 
current sources have dropped out of the summation. Equation (6) is a sum 
over resistances only if there are no capacitors. 

Let us now derive a subsidiary version of Eq. (5). Figure 1 shows 
ik/?k as function of some parameter A, which measures the distance from 

the steady state, at which all/2~ = 0. At this point in the discussion this steady 
state can be stable or unstable. At A = 0, we have l?k = 0, and hence 

S 

LZik~ 

Fig. 1. Y~ i~/2~ is negative, except at the steady 
state, A = 0, and is continuous. 
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i~l~k must vanish there, while it is negative elsewhere, and is continuous. 
To first order in )t we then have 

i~ = iok + ~ilk (7) 

= ( 8 )  

Equation (7) follows from the fact that the steady state will not (in general) 
be a state of zero current. In order that 

i~l~ = ~ Mo~l?lk + ~2 ~ 171dlk ~< 0 (9) 
k k k 

be quadratic in 4, as shown in Fig. 1, we must have ~ iokl2~k = 0. This leaves 
us with 

< 0 (10) 

o r  

3ik(dVk/dt) <~ 0 (I1) 

where 3 indicates deviations from the steady state. 
Let us assume that we are given a stationary point, i.e., a point at which 

all 12 k = 0. Let us also assume that we are told that ~k 3ik 3 Vk > 0 for all 
variations away from that point. Following an argument given by Nicolis 
(Ref. 16, p. 233), we would then state that Eq. (11) cannot be satisfied while 
moving away from the stationarypoint, and that the point must be a point 
of stability. We cite this argument here without certainty about its clarity or 
its validity, and will rely instead upon the next section for an alternative and 
more broadly applicable discussion of the role of ~g 3ik 3V~. 

4. THE EXCESS ENTROPY PRODUCTION 

Consider ~ ,  3ik 3V~, summed over the dissipative elements (Ref. 10, 
p. 83). 3i~ and 3Vk are departures from a stable state. If  the differential 
resistances dVk/dik are all positive, then each term in this sum is positive, and 
it is obvious that the sum must also be positive. Circuits with some negative 
differential resistances can, however, be stable under certain conditions. (18)'a 
It therefore requires argument in that case to show that ~k 3ik 8 Vk, summed 
over the resistive elements, is still positive. The deviations from the steady 
state will decay (if there is stability) in accordance with the linearized circuit 
equations. The decay is then determined by the equations of a linear network, 

a See especially the discussion associated with Fig. 2 of  Ref. 18. 
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and is characterized by a series of characteristic values with real parts giving 
decay. In other words, we have 

( aik ~ = ~ A,( :i~.,i)e_~, t (12) 
ark} 

where R.P. &- > 0, and A, measures the contribution of the characteristic 
mode i. The circuit elements are denoted by the index k. In the stable 
linearized circuit, however, power flow must clearly be out of the reactances 
into the resistances, and therefore these must exhibit a net dissipation. (At 
this point we must once again assume positive capacitances and positive 
inductances. A negative reactance gains energy while its excitation disappears.) 
Since ik and Vk are the currents and voltages in the linearized circuit, we 
have 

3ik aVk > 0 (13) 
k 

Conversely, if (13) is satisfied for aa  states near a given steady state of un- 
certain stability, that steady state must be stable. If (13) is satisfied for all of 
the neighborhood, then exponentially growing modes, in which energy is fed 
into the linearized reactances, are ruled out. 

Let us specialize to the case where the linearized circuit has only positive 
inductances and resistances, or else has only positive capacitances and 
resistances. Then the linearized network yields first-order differential equa- 
tions and the A~ must all be real, leading to a simple relaxation behavior 
without oscillation. Now the various decay modes contributing to (13) must 
decay independently; the dissipation cannot depend on any  interaction 
between them. Thus, invoking the notation of Eq. (12), we have 

aik avk = ~,, A~ 2 aik,, ark,, e -2A,t > 0 (14) 
k ~,k 

For each mode, however, time derivatives are simply given by a multiplication 
by - A~;  hence 

= ~ -AiAi 2 aik,i aVk,~ e -2~t 
i,1r 

(15) 

The original contribution of each mode to Eq. (14) is positive. Thus after 
multiplication by - h i  each mode contribution becomes negative. Thus 

~. d ~  dik aVk = ~ otk ~ < 0 (16) 
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Let us compare Eq. (16) to Eq. (11). Equation (11) did not presuppose 
that the steady state had to be stable, whereas Eq. (16) applied near a stable 
steady state. Near a stable state Eq. (16) includes both Eq. (11) and its 
"dual ,"  which we did not bother to discuss. Note, however, that Eq. (16) is 
more generally applicable. Equation (11) was derived from Eq. (5), which 
applies to circuits without inductances and without current sources. Both 
inequalities in Eq. (16) however, apply simultaneously to a circuit with an 
arbitrary mixture of current and voltage sources, as long as the circuit 
contains only one type of reactance. 

The normal mode viewpoint utilized above makes it easy to emphasize 
an important limitation in the criteria discussed in this section. They are all 
inequalities that hold if we are relaxing toward a stable steady state. On the 
other hand, if (13), for example, is satisfied at a particular time by a particular 
state near a state that satisfies dV/dt = 0 for all its circuit elements, that does 
not guarantee relaxation toward a stable state. A state that satisfies dV/dt = 0 
can have a mixture of stable and unstable modes of deviation. If  we start 
initially with a state that includes primarily the stable modes with a very 
small admixture of the unstable modes, then (13) will be satisfied initially, 
and will only be violated after the unstable modes have grown enough to 
become significant. 

5. N O N D E T E R M I N I S T I C  B E H A V I O R  

The discussion up to now has concentrated on aspects related to the 
macroscopic equations, without allowance for fluctuations. Let us now 
consider more complex situations, where fluctuations are essential to a 
proper description of stability. We are particularly concerned with multi- 
stable systems. Transitions induced by fluctuations are needed to describe 
the relaxation from a metastable steady state over an intervening improbable 
state to a more favored steady state. Such systems were discussed in the 
analysis of tunnel diode circuits (a~ and in a later analysis of degenerate 
parametric oscillators. (19~ Very recently similar theories have appeared for 
bistable chemical systems. (2~ The tunnel diode circuit, invoked in some of 
this author's earlier papers as a sample circuit, is shown in Fig. 2. Consider 
now what happens if we change the battery voltage from EB to a new voltage 
EB'. Each of the two stable states will be displaced, but at the same time 
their relative probabilities of occupation will change. If the system is given 
enough time, there will be fluctuation-activated transitions from the neighbor- 
hood of one stable state to that of the other. 

First consider the evolution criterion of Section 3, ~ ik 12~ ~< 0, which 
invokes summation over the lossy elements in the circuit. The derivation we 
have given applies in the presence of fluctuations. We can apply the equations 
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EB =~= V 

r I I . . . . . . .  J ~_ 

11 

Fig. 2. Tunnel diode, with a shunt ca- 
pacitance, fed through series resistance 
R from voltage source EB. The solid 
line gives tunnel diode current as a func- 
t ion of V. The dashed " load  l ine"  gives 
the resistive current (EB -- V ) / R .  A and 
C are locally stable states, C is unstable. 

J 
EB 

to an individual circuit in the presence of its fluctuations, or else all of the 
currents and voltages can be taken to be ensemble averages. (The fluctuations 
must, however, be sufficiently limited to avoid negative capacitance ranges, 
in case these exist.) 

The evolution criterion, of course, does not help us avoid the complex 
calculations of Ref. 2. The criterion does not permit us to predict whether 
we do have the correct probability distribution between the two favored 
states, or in which direction that distribution has to shift. After all, the 
only physics that went into the derivation of the criterion, beyond KCL, is 
that capacitances are positive. We can hardly expect any serious predictive 
capability from that. 

It will, in fact, be instructive to consider what the evolution criterion 
states for Fig. 2. It tells us 

iR dVn/d t  + iD dVo /d t  < 0 (17) 

where R and D denote the resistance and diode, respectively. For a fixed 
value ofEB, dVR/ dt = - dV~/  dt = - d Vc/dt,  where C denotes the capacitance. 
Hence (17) becomes 

(in -- iD) dVc /d t  > 0 (18) 

Noting that ic, the capacitive charging current, is given by i• - iv ,  we 
regain 

ic dVc /d t  > 0 (19) 

which clearly tells us nothing about the real kinetics in the circuit. 
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What about the "excess entropy production" of(13), ~ 8ik 3V~, summed 
over all dissipative elements ? For a single system in the presence of fluctua- 
tions this clearly does not have to be positive. In the presence of fluctuations, 
energy (even when we are at, or close to, equilibrium) can occasionally flow 
in the wrong direction, out of the resistors, into the energy-storing elements. 
As an average, over an ensemble of independently fluctuating systems, it 
becomes a more complex question, which we will discuss in detail. Let ( ) 
denote ensemble averaging. From KCL, we have for each node in a circuit 

(3i, j) = 0 (20) 
J 

Then, multiplying by the node potential deviation 3V~ and summing again, 
we obtain 

~. 3V, (3i, j) = 0 (21) 
t , j  

We can then ensemble-average again, leaving 

(3 V~)(3i~j) = 0 (22) 
t , j  

Equation (22) can be written as a sum over all circuit branches 

(3V)(8i )  = 0 (23) 

where 3 V is now a deviation in voltage drop from a steady state. Current and 
voltage sources drop out of Eq. (23) since in each case one of the factors in 
Eq. (23) will vanish. For capacitors 3i = i = C(V)dV/dt. For inductors 
3 V = V = L(i) di/dt. Thus Eq. (23) becomes 

(3V)(3i )  = - ~ (3V)(C(V) dV/dt) - ~ (~i)(L(i) di/dt) (24) 

where R, C, and L denote the type of circuit element in the summation. Let 
us assume for the moment, as in Section 3, that C and L are positive. To show 
that the excess entropy production principle does not apply generally, it will 
be adequate to consider the simpler case C(V) = const, and to give a counter 
example applicable to that case, without inductances. The right-hand capaci- 
tive term in (24) will be positive if (3V) and (dV/dt) are opposite in sign. 
Are they ? 

Consider the circuit of Fig. 2. Now increase EB, but stay within the range 
of bistability. Keep the system at the new battery voltage long enough to 
permit the rapid relaxation that takes place near each of the two locally 
stable states. Let us not, however, stay there long enough to permit the 
slower transitions from the low-voltage branch (A) to the high-voltage 
branch (C), which would eventually take place. <2) Then reduce E~ slightly 
again, but not nearly as much as the original increase. We have now created 
the state for which we want to compute (3V)(dV/dt) as the relaxation 
proceeds. Just after arriving at this final state we will at first again have a 
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rapid local adjustment which initially dominates (dV/dt), and is negative, 
corresponding to the final reduction in EB. What about (5 V)?  It represents 
the voltage deviation from the final steady state. It will be dominated by the 
large voltage jumps from one branch to the other that still have to take place. 
Since almost none of these have taken place, and since the overall change in 
EB was an increase, (~V) is negative. Thus it has the same sign as (dV/dt) 
does, initially, and "excess entropy product ion" fails. 

6. I M P O S S I B I L I T Y  OF  A N Y  L O C A L  S T A B I L I T Y  C R I T E R I O N  

It has been argued in Ref. 14 that no criterion considering only the 
behavior in the neighborhood of  states A and C of Fig. 2 can make predictions 
about relative probability distributions between these two neighborhoods. 
Since Ref. 14 concentrated on a mechanical model, let us here argue for the 
same point using, in consistency with the rest of this paper, an electrical 
circuit. Instead of utilizing the circuit of Fig. 2, we will invoke the slightly 
different circuit of Fig. 3. Here the series resistor has been replaced by a 
thermionic diode. The exact choice of device is not important; the key point 
is that this is a device that, in contrast to the resistor of Fig. 2, transfers one 
whole electron at a time. In that case we have a circuit whose master equation 
can be solved very simply. (3,2~ Let W~+I.N give the probability of a 
transition from the state with N electrons on the upper capacitor plate to 
one with N + 1 electrons, and let WN,u+I be the inverse transition probability. 
In the steady state, then, the respective occupation probabilities obey 
p(N+ 1) /p(N)= WN+I,N/W~,N+I. Thus the relative probabilities of  

iol • ]- 
B 

T (b) (c) 
c/  

V I V z E B 

Fig. 3. (a) The circuit and (b) its characteristic. A tunnel diode (solid characteristic) is 
shunted by a capacitance and in series with a device (dashed load line) that transfers one 
electron at a time. (c) An analogous unsymmetric bistable potential well, in which C is 
arbitrarily drawn as the preferred state, which need not be the case for (b). The range 
between 1,1 and 1"2 in (b) illustrates a possible range of operation for the "auxiliary 
circuit" invoked in the text. 
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occupation of any two states p(M)/p(N) can be found by multiplying all the 
intervening ratios of the form just given. 

Our basic point: We shall show how to modify a system shown in Fig. 
3 in such a way that the system behavior and all the local properties near 
states A and C remain unaffected, but still change the kinetics over a range 
of the intervening states. Thus we can change p(C)/p(A), without changing 
the entropy associated with either C or A, and without changing any of the 
time or q derivatives of entropy near A or C. It is therefore impossible to use 
a purely local characterization to predict the system's preferred state. The 
kinetics along the whole path connecting C and A must be involved. 

Let us now describe such a modification for Fig. 3. Let the capacitor 
consist not only of the intrinsic device capacitance but, in addition, let there 
be a parallel external capacitor. The plates of this external capacitor are 
connected to springs and the plates attract each other as the capacitor is 
charged. (This results in an inevitable capacitive nonlinearity; that is an 
incidental point not bearing on our argument.) Now as the capacitor plates 
move between the positions corresponding to V1 and V2 in Fig. 3b, the 
capacitor plate motion is used as a switch to connect an auxiliary circuit 
between the two plates. This auxiliary circuit is then active only between V1 
and V2 and modifies the kinetics in that range. The simplest example of an 
auxiliary circuit would be a very large resistance at a very high temperature. 
The large value of resistance ensures that the macroscopic or average behavior 
of the circuit, as given by the equations of motion, remains unaffected. The 
high temperature, however, means that fluctuations in the capacitive charge 
are raised, increasing both WN,• + 1 and WN+ 1,N similarly, and thus bringing 
the ratio p(N + l)/p(N) closer to unity. This flattens the probability distribu- 
tion within the "noisy" range, and thus brings p(ql)/p(q2) closer to unity 
(ql and q2 are the capacitive charges corresponding to V~ and V2). To make 
this argument a very clean one, we should preserve the nature of our capacitive 
charge ladder, which only allows charge transitions by an electronic charge. 
To satisfy this requirement, the resistor in the auxiliary circuit would, for 
example, be made up of a diode (thermonic or tunnel) or of two diodes in 
parallel and facing in opposite directions. Outside of the range of the auxiliary 
circuit p(N + 1)/p(N) remains unchanged. Thus by "leveling" the variation 
of p in the range between ql and q2 we have changed p(C)/p(A). (We need not 
restrict ourselves to a comparison of the bistable circuit with and without 
auxiliary circuit. Compare, instead, two situations with the same auxiliary 
apparatus, and only change the intensity of the noise source between the 
two comparison eases.) 

Some auxiliary discussion of further details at the switch points Vz and 
V2 is appropriate. Let us specialize to the case in which the capacitor plate 
positions adjust rapidly compared to the typical time between electron tran- 
sitions. Furthermore assume that the value V~ is achieved when there are 
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more than N1 electrons on the capacitor, but less than N1 + 1. Thus 
WN,n§ 1 >> W~+ 1.N and the steady state probability density drops as we enter 
the noisy range. There is, however, a comparable rise as we leave the noisy 
range at V2, which is assumed to occur between N2 and N~ + 1 electronic 
charges. More explicitly, multiplying the ratios specifying p(N + 1)/p(N) we 
find 

p(N2 + 1)/p(N1) = (Wu~ +1,N1/WN~.N2 + 1)7, (25) 
with 

N2 

= (26) 
N1+1 

By going to a sufficiently noisy system, 7 can be brought as close to unity as 
desired. 

The discussions in this section relate to the significance of first-order tran- 
sitions in dissipative steady state systems. Consider a bistable system that is 
slowly modulated by subjecting it to a change in temperature, battery voltage, 
or some other parameter. As this change takes place, assume that the more 
likely state becomes the less likely state, but still remains as a metastable 
state. That is a first-order transition. In a system of limited size it is not 
discontinuous, but consists of a gradual change in the two relative prob- 
abilities. The point at which the two probabilities are equal may be con- 
sidered the transition point or phase equilibrium point. The observed 
transitions will exhibit a hysteresis and will take place above or below this 
transition point, depending on the direction of the parameter change. The 
size of the hysteresis depends upon the rate at which the parameter is 
modulated. Note that in accordance with our conclusions about the in- 
adequacy of local criteria, the parameter that corresponds to the first-order 
phase equilibrium cannot be determined without concern for the  phase 
transition mechanism. Phase equilibrium can no longer be regarded as a 
thermodynamic coincidence, determined by the equality of  free energies, as in 
the case o f a n  equilibrium transition. 

7. S O M E  KEY P O I N T S  

The "evolution criterion" dxP/dt > 0 is valid for circuits with voltage 
sources, resistances, and capacitors, and with no inductances. The differential 
capacitances have to be positive. The theorem applies even in the presence 
of pronounced fluctuations. It has no direct relation to circuit stability. 

The "excess entropy product ion" theorem ~k ~Ik ~ Vk > 0 is a result of 
stability, but does not guarantee stability unless satisfied for all states in the 
neighborhood of the test state, as is made quite clear in the original Brussels 
discussions. It applies to a circuit with any mixture of reactances and with a 
mixture of current and voltage sources. The differential resistances need not be 
positive, as long as overall circuit stability is maintained. The theorem fails to 
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apply to an individual circuit in the presence of  fluctuations. The theorem fails 
to apply to a circuit whose relaxation behavior  must  be described by dis- 
tr ibution functions, rather than single-valued macroscopic  quantities. 

All o f  the theorems are really heat generation theorems, rather than 
entropy product ion theorems, if the circuit elements are at different tem- 
peratures. 

A C K N O W L E D G M E N T S  

This paper grew out  o f  informal conversations started at the Conference 
on Cooperative Phenomena  in Equilibrium and Non-Equi l ibr ium Systems 
held at Kloster Gars, in September 1974, and continued in subsequent 
debates by correspondence. The author  is indebted to C. Gardiner,  H. 
Haken,  G. Nicolis, H. Thomas,  and, most  particularly, to  F. Schl6gl. By no 
means have all of  these individuals come to agree with my views. The author  
is also indebted to his local colleague, Charles Bennett, for many  further 
discussions. 
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